Examen final de Chimie 1

Exercice 1: (7,5 pts)

- A) 1. Soit l'ion hydrogénoïde du lithium $_3\text{Li}^{2^+}$ dans son 1 er état excité . Cet ion absorbe un photon de fréquence $\nu=7,4.10^{15}$ Hz .
- a) Déterminer le niveau sur lequel se trouve l'électron après absorption du photon.
- b) Déterminer l'énergie de ce niveau . Comment appelle-t-on cet état ?.
 - 2. Cet ion va se stabiliser en émettant une lumière de longueur d'onde λ = 91,15 nm.
- a)Déterminer la transition électronique correspondante à cette longueur d'onde.
- b) En déduire la raie et la série.
 - 3. Représenter toutes les transitions de l'électron dans un diagramme.
- **B)** 1. La longueur d'onde de la 3^{ème} raie de la série de Balmer d'un ion hydrogénoïde est égale à 27,13 nm. Quel est cet ion ?
 - 2. Calculer l'énergie absorbée par cet ion correspondante à la plus grande longueur d'onde.
- C) On considère la raie limite de la série de Lyman pour deux ions hydrogénoïdes de numéro atomique Z et Z' (avec Z' > Z) . Lequel de ces deux ions émettra plus d'énergie ?

On donne : $R_H = 1,097.10^7 \, \text{m}^{-1}$, $C = 3.10^8 \, \text{m.s}^{-1}$

Exercice 2: (8,5 pts)

- A) Soient les éléments : $_{34}$ Se , $_{38}$ Sr , $_{47}$ Ag , $_{52}$ Te , $_{56}$ Ba .
- 1. Ecrire la configuration électronique de ces éléments et donner leur position dans le tableau périodique (période , groupe).
- 2. Classer ces éléments par ordre décroissant de leur énergie d'ionisation.
- B) Soit un élément appartenant à la 4^{ème} période et possédant deux électrons célibataires.
- 1. Quelles sont les configurations possibles ?
- 2. Cet élément n'est pas un métal de transition . Combien reste-t-il de possibilités ?
- 3. Cet élément possède le plus petit rayon atomique. Quelle est sa configuration électronique ?
- C) Déterminer la configuration électronique de l'élément appartenant au groupe de $_{21}$ Sc et à la période de $_{37}$ Rb . En déduire le nombre d'électrons de valence et le nombre d'électrons de cœur .

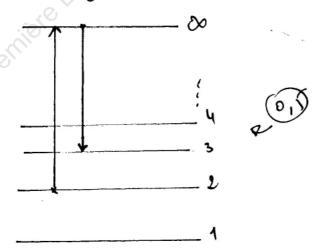
Exercice 3: (4 pts)

- 1. Représenter le diagramme de Lewis des espèces suivantes :
 - CIF_3 , N_2O_4 , $IO_2F_2^-$ (charge négative est portée par I) .
- 2. Dans la colonne du tableau périodique comprenant l'azote ($_{7}$ N), on trouve le phosphore P et l'Arsenic As .
 - a. Ecrire le diagramme de Lewis de la molécule AsBr₅.
 - b. La règle de l'octet est-elle vérifiée pour cette molécule ?
- 3. Déterminer la géométrie et la famille de $IO_2F_2^-$ en utilisant le modèle VSEPR .

On donne : $_7N$, $_8O$, $_9F$, $_{17}CI$, $_{53}I$ (F , CI , Br et I sont des halogènes)

xuciet: (7,5pts) 65
A) 1) a)
$$\lambda = \frac{C^2}{3.10^3} = 0,4054$$

$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}$


$$\frac{1}{\lambda} = Z^{2}.RH \left(\frac{1}{h_{1}^{2}} - \frac{1}{h_{2}^{2}}\right) \Rightarrow \frac{1}{h_{1}^{2}} - \frac{1}{h_{2}^{2}} = \frac{1}{\lambda.Z^{2}.RH}$$

$$\Rightarrow \frac{1}{h_2^2} = \frac{1}{h_1^2} - \frac{1}{\lambda \cdot z^2 \cdot R_H} = \frac{1}{4} - \frac{1}{0,4054 \cdot 10^{\frac{3}{2}} \cdot 9 \cdot 1,097 \cdot 10^{\frac{3}{2}}}$$

a)
$$\frac{1}{\lambda} = z^2 R H \left(\frac{1}{h_1^2} - \frac{1}{h_2^2}\right)$$
 avec $M_2 = \infty$

$$= \frac{1}{\lambda_{\infty}} - \frac{2^{2}R_{H}}{h_{1}^{2}} = \frac{1}{\lambda_{\infty}} = \frac{1}{\lambda_{\infty}} = \frac{2^{2}R_{H}}{h_{1}^{2}} = \frac{1}{\lambda_{\infty}} = \frac{2^{2}R_{H}}{h_{1}^{2}} = \frac{1}{\lambda_{\infty}} = \frac{2^{2}R_{H}}{h_{1}^{2}} = \frac{1}{\lambda_{\infty}} = \frac{2^{2}R_{H}}{h_{1}^{2}} = \frac{1}{\lambda_{\infty}} = \frac{1}{\lambda_{\infty}} = \frac{2^{2}R_{H}}{h_{1}^{2}} = \frac{1}{\lambda_{\infty}} = \frac{1}$$

b) Il s'aprir de la raie limite de la serie de Parchen.

$$\Delta E = E_2 - E_1 + OB$$

$$\Delta E = -21,78 \cdot 10^{-15} = -22 \text{ at } E_1 = -13,6.72$$

$$\Delta E = -13,6.76 + 13,6.76$$

$$\Delta E = -13,6.76 + 13,6.76$$

$$\Delta E = -13,6.76 + 13,6.76$$

$$\Delta E = -13,6.78 + 13,6.76$$

$$\Delta E = -13,6.78 + 13,6.76$$

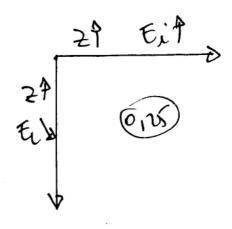
$$\Delta E = -13,6.78 + 13,6.76$$

$$\Delta E = h \frac{C}{\lambda_{\infty}} = h \cdot C \cdot Z^{2} R_{+}$$
 $\Rightarrow Z \neq \Delta E \neq 0$

d'ion émettant plus d'énergre est l'ioni possidant le numéro atomique le plus élevé ca d 2'. (200)

Exercice 21 (8,5 pts)

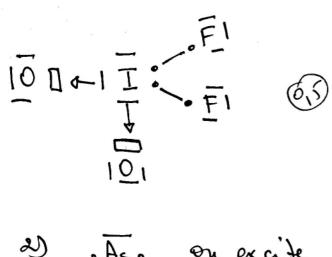
1 Ag. 15² 25¹ 2ρ¹ 35² 3ρ⁶ 45² 3d¹⁰ 4ρ⁶ 55² 4d²


1 Ag: 15² 25² 2ρ¹ 35² 3ρ¹ 45² 3d¹⁰ 4ρ⁶ 55² 4d¹⁰ 5ρ⁴ 2018

Ba: 15² 25² 2ρ⁶ 35² 3ρ⁶ 45² 3d¹⁰ 4ρ⁶ 55² 4d¹⁰ 5ρ⁶ 65² 4018

	période	groupe
Se	4	IIA
Sr	5	IIA
Ag	5	IB
Te	5	II A
Ba	6	IIA

Eit Se As Te Ba 615


Eise > Eite > Eite > Eise > Eise > Eise ~ Eis

B) ... 45 3 d2, ... 45 3 d8 ,... 45 3 dh 4p2 ,... 45 3 dh 4p 4 (1)

2) Les 2 premières configurations sont à enlever
can elle correspondent aux métaux de transition.

2) il vobe 2 possibilités: ... 4523 de 4p2 et 4523 de 4p4 - 015 3) L'élement possédant le plus petit rayon et-celui qui se trouve à dronte du fableau périodique c'à d celui qui a la configuration externe 45 3 d'04 pt X: 152 252 20635 3p6 4523d64p4 (0,5)) Sc: 158Se 2632364523d1 37, 152 252 26 382 36 452 3d 4p6 581) 014 55 4d¹ X. 152 252 2635 35 45 30 45 30 46/55 40 200 3è de valence & 6,75) 36 é de coeur + (0,15) Exercice 3: (4pots) IF IEI

4/5

2). As. on excite As

1 Br Asie Bri

la règle de l'octet n'er pas vein fiée can As er entoure de 10 é.

3) IO2F2m= 1 => m+m=5 => forme pentagonale n= 4 => AXI E

famille AXy E

NB! d'étudiant peut représente au lieu de le liavoir covalente dative la double liavoir (atome excité) comptez juste.

5/