## Tutorial Series Number 1 - Math1

## Exercise 1

Among the following statements, which ones are true:

1. The sky is blue when it's sunny.
2. $2+2=5$.
3. All roses are red.

## Exercise 2

Form the negation of the following statements:

1. $[(p \Rightarrow q) \vee r] \wedge(p \vee q)$.
2. $[(p \wedge q) \vee r] \Rightarrow(p \wedge r)$.

## Exercise 3

Consider the following assertions:
(a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y>0 ;(b) E x \in \mathbb{R}, \exists y \in \mathbb{R}: x+y>0$;
(c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y>0 ;(d) \exists x \in \mathbb{R}, \forall y \in \mathbb{R}: y^{2}>x$.

Are assertions $(a),(b),(c),(d)$ true or false? Provide their negations.

## Exercise 4: Direct reasoning

Show that if $n$ is odd, then $n^{2}$ is odd.

## Exercise 5: Induction

Prove by induction that, for any integer $n \geq 1$, the sum of the first $n$ odd integers is given by the following formula:

$$
1+3+5+\ldots+(2 n-1)=n^{2}
$$

## Exercise 6: Contrapositive reasoning

If $x$ is an integer such that $x^{2}$ is not divisible by 3 , then $x$ is not divisible by 3 .

