

Université Abou Bekr Belkaid Tlemcen Faculté des Sciences Département d'informatique

Analyse 1 Fiche de TD 2

Les nombres complexes

1ère Année Licence Informatique - 2025-2026

Exercice 1

Soit $z_1 = 1 + \sqrt{3}i$ et $z_2 = 1 - i$.

- 1. Déterminer la forme algébrique de $z_1 + z_2$, $z_1 \times z_2$ et $\frac{z_1}{z_2}$.
- 2. Écrire z_1 et $\frac{(z_1)^3}{(z_2)^5}$, ainsi que leurs conjugués, sous forme exponentielle et trigonométrique.

Exercice 2

Résoudre dans \mathbb{C} :

a)
$$2z + i = \overline{z} + 1$$

b)
$$2z + 2\overline{z} = 2 + 3i$$

c)
$$e^z = 3\sqrt{3} - 3i$$

Exercice 3

Soit $z \in \mathbb{C} \setminus \{1\}$ tel que |z| = 1. Montrer que $(i \cdot \frac{z+1}{z-1}) \in \mathbb{R}$.

Exercice 4

Trouver les entiers $n \in \mathbb{N}$ tels que $(1 + \sqrt{3}i)^n$ soit un réel positif.

Exercice 5

1. Déterminer les racines carrées de :

a)
$$z_0 = -3$$

b)
$$z_1 = 3 + 4i$$

c)
$$z_2 = i$$
 (Supplementaire)

2. Résoudre dans \mathbb{C} :

a)
$$z^2 + z + 1 = 0$$

b)
$$z^2 - \sqrt{3}z - i = 0$$

c)
$$z^2 + iz - \frac{1}{2} - i\frac{\sqrt{2}}{2} = 0$$
 (Supplémentaire)

$$d) \left(\frac{z+i}{z-i}\right)^2 = 3+4i$$

Exercice 6

1. Déterminer les solutions complexes de :

a)
$$z^3 + i = 0$$

b)
$$z^4 = 1$$

- 2. Déterminer sous forme trigonométrique les solutions de $z^4 = 8(1 i\sqrt{3})$
- 3. Soit $a=\frac{\sqrt{6}-\sqrt{2}}{2}+i\frac{\sqrt{6}+2}{2}$. Vérifier que $a^4=8(1-i\sqrt{3})$ et en déduire sous forme algébrique les résultats du 2) .

1

4. En déduire les valeurs exactes de $\cos\left(\frac{11\pi}{4}\right)$ et $\sin\left(\frac{11\pi}{4}\right)$.

Exercice 7

Soit $f: \mathbb{C} \to \mathbb{C}$, définie par $f(z) = \frac{z-2}{z+i}$.

1. Déterminer l'ensemble des points tels que $f(z) \in \mathbb{R}$.

2. Déterminer l'ensemble des points tels que $f(z) \in i\mathbb{R}$.

Exercice 8 (Facultatif)

1. Calculer les racines carrées de $1 + 2\sqrt{2}i$

2. Résoudre $z^2 + iz - \frac{1}{2} - i\frac{\sqrt{2}}{2} = 0$.

Exercice 9 (Facultatif)

1. Déterminer les racines carrées de $\sqrt{3} + i$ sous forme algébrique puis trigonométrique

2

2. En déduire la valeur de $\cos\left(\frac{\pi}{12}\right)$.

Exercice 10 (Facultatif)

Soit $z = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$.

1. Calculer les racines carrées de z.

2. Donner le module et l'argument de z, et l'écrire sous forme exponentielle.

3. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

Exercice 11 (Facultatif)

1. Résoudre dans \mathbb{C} : $z = \frac{(5-i)z + 2(1+i)}{iz + 2}$, avec z = 2i.

2. Écrire z_1, z_2 et $\frac{z_1}{z_2}$ sous forme exponentielle avec $|z_1| > |z_2|$.

Exercice 12 (Facultatif)

Trouver les lieux géométriques suivants :

 $1. \operatorname{Re}(z) - \operatorname{Im}(z) < 1$

2. |z-4+i|=1

 $3. \left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2}$

Exercice 13 (Facultatif)

1. Montrer que :

$$1 + e^{i\pi/5} + e^{i2\pi/5} + e^{i3\pi/5} + e^{i4\pi/5} = \frac{2}{1 - e^{i\pi/5}}.$$

2. En déduire les valeurs des sommes :

$$S = \sum \cos\left(\frac{k\pi}{5}\right), \quad S = \sum \sin\left(\frac{k\pi}{5}\right).$$