Durée: 01h 30min

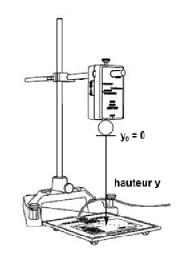
UNIVERSITE ABOUBAKR BELKAÏD DE TLEMCEN

FACULTE DES SCIENCES

Mercredi 18 Janvier 2017

Département de Physique

Examen Final - TP Physique 1


CORRIGE

IMPORTANT : N'utiliser que quatre chiffres après la virgule dans tous les calculs <u>sauf pour le calcul</u> $\underline{de} (y_i - bx_i)^2$

La bonne réponse est soulignée

On demande à un étudiant de réaliser une expérience qui lui permet de déterminer l'accélération de la pesanteur g. Pour cela, en utilisant le dispositif de la figure ci-contre, il mesure les temps t que met la bille pour parcourir différentes hauteurs y pour tracer la droite $y = f(t^2)$. Ensuite il représente les points expérimentaux sur une feuille millimétrée en utilisant l'échelle 1cm \longrightarrow 0,025 m pour l'axe des y et l'échelle 1cm \longrightarrow 0.0075 y pour l'axe des y et l'échelle 1cm y convertis en centimètre sont donnés dans le tableau suivant :

y(cm)	16	20	24	28
$t^2(cm)$	11	13,7	16,5	19,2

<u>Question n°1:</u> Quel est le tableau de mesures qui nous permet de retrouver les valeurs du tableau précédent ? <u>2PTS</u>

A/ B/

y(m)	0,4	5	0,6	0,7
$t^2(s^2)$	0,0825	0,1028	0,1238	0,1440

<i>y</i> (<i>m</i>)	0,4	0,5	0,6	0,7
$t^2(s^2)$	0,8250	0,1028	0,1238	0,1440

C/ D/

<u>y(m)</u>	<u>0,4</u>	<u>0,5</u>	0,6	0,7
$\underline{t^2(s^2)}$	0,0825	0,1028	0,1238	0,1440

y(m)	0,4	0,5	0,6	0,7
$t^2(s^2)$	0,0825	0,1045	0,1238	0,1440

Question n°2 : Quelle est l'unité de la pente b dans le système international (SI) ? 2PTS

A/ $m s^{-2}$

B/ N/kg

C/ N/m

D/ Aucune des trois réponses

Question n°3: Quelle est alors sa valeur dans le système international (SI)? 2PTS

A/ 4,0296 SI

B/ 4,1852 SI

C/ 4,3567 SI

D/ 4,8596 SI

Question n°4: Quelle est la valeur de l'incertitude (Δy) sur la hauteur y? 2PTS

A/ 0,0119m

B/ 0,0011m

C/ 0,1011m

D/ 0,0138m

Question n°5: Quelle est alors la valeur de l'incertitude (Δb) sur b? 2PTS

A/ 0,0315 SI

B/ 0,0015 SI

C/ 0,0048 SI

D/ 0,0521 SI

<u>Question n°6</u>: D'un même point **O**, on lâche sans vitesse initiale successivement deux billes à une seconde d'intervalle. En négligeant tout frottement, la distance entre les billes : 2PTS

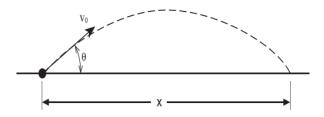
A/reste constante B/augmente puis se stabilise C/augmente D/évolue en fonction des masses des billes

<u>Question n°7</u>: On lâche sans vitesse initiale une bille à partir d'une hauteur h = 1 m. A quelle hauteur se trouve la bille à l'instant t = 0, 3 s? 2PTS

<u>Question n°8</u>: Quelle doit être la longueur l du fil d'un pendule simple dont la masse accrochée est m=20~g pour que la période des petits mouvements de ce pendule soit T=1~s?

Question n^{\circ}9: La période T des petits mouvements d'un pendule simple dépend de : $\frac{1}{1}$

A/ l'angle
$$\theta$$


Question n°10: Quelle est la pulsation ω d'un pendule simple de longueur l=10~cm et de masse m=20~g qui oscille avec de faibles amplitudes ? 1PT

Question n°11: La portée est la distance horizontale, x, entre la bouche du mini-lanceur et le point d'impact de la chute de la bille. La portée est donnée par : $x = \frac{v_0^2}{a} \sin 2\theta$

où : v_0 : est la vitesse initiale de la bille,

 θ : est l'angle d'inclinaison horizontale,

g: est l'accélération de la pesanteur.

Un étudiant 'A' dit qu'on ne peut pas obtenir la même portée pour deux angles θ différents. L'étudiant 'B' dit qu'on peut obtenir la même portée pour deux angles θ différents. Qui dit vrai? 1PT

Question n°12: Un étudiant a déterminé la constante de raideur k d'un ressort dans un laboratoire et a écrit les résultats ci-dessous. Quelle est l'écriture la plus correcte ? $\frac{1}{2}$

A/
$$k = (3.2 \pm 0.13)N/m$$

B/
$$k = (3, 2 \pm 0, 2)N/m$$

C/
$$k = (3.2 \pm 0.13) N. m$$

D/
$$k = (3.2 \pm 0.2) N. m$$

On donne:

$$g = 10 \, m/s^2$$

$$b = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

$$\Delta y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - bx_i)^2}$$

$$\Delta b = \frac{\Delta y}{\sqrt{\sum_{i=1}^{n} x_i^2}}$$

Bon courage!